

BIONETICS

MUTAGENIC EVALUATION OF COMPOUND FDA 71-65 ASCORBIC ACID

.C 35

The Personney Ave a Cotto serie Mary Lind Treats

LBI PROJECT #2468

MUTAGENIC EVALUATION OF COMPOUND FDA 71-65 ASCORBIC ACID

SUBMITTED TO

FOOD & DRUG ADMINISTRATION
DEPARTMENT OF HEALTH, EDUCATION AND WELFARE
ROCKVILLE, MARYLAND

SUBMITTED BY

LITTON BIONETICS, INC. 5516 NICHOLSON LANE KENSINGTON, MARYLAND

JANUARY 10, 1975

TABLE OF CONTENTS

		Page No.
Evalua	tion Summary	
I.	Objective	2
II.	Materials	2
III.	Methods	3
IV.	Solubility Properties	7
٧.	Toxicity and Dosage Determinations	. 8
VI.	Non-activation Plate Tests	9
VII.	Activation Plate Tests	11
VIII.	Non-activation Suspension Tests/Salmonella	17
IX.	Activation Suspension Tests/Salmonella	19
Х.	Non-activation Suspension Tests/Saccharomyces	27
XI.	Activation Suspension Tests/Saccharomyces	29
XII.	Summary of Test Results	35
XIII.	Interpretation and Conclusions	41
Append [*]	ix - Summary of Tests Evaluating DMSO for Genetic Activity in Salmonella and Saccharomyces	

EVALUATION SUMMARY

Compound FDA 71-65, Ascorbic Acid, did not exhibit genetic activity in any of the $\underline{\text{in vitro}}$ tests employed in this evaluation.

DATE:

January 10, 1975

SPONSOR:

Food and Drug Administration

SUBJECT: Mutagenic Evaluation of Compound FDA 71-65, Ascorbic Acid

OBJECTIVE I.

The objective of this study was to assess the genetic activity of the test material in microbial assays with and without the addition of mammalian metabolic enzyme preparations.

II. MATERIALS

Test Material A.

Ascorbic Acid Hoffman LaRoache No. 944102

Tissue Homogenates and Supernatants В.

The tissue homogenates and 9,000 x g supernatants were prepared from liver, lung and testes of the following mammalian species: Mouse - ICR random bred adult males; rat - Sprague-Dawley adult males; and primate - Macaca mulatta adult males.

C. Indicator Organisms

The indicator organisms used for all tests are described below:

- Saccharomyces cerevisiae, strain D4: ade 2-1.
- Salmonella typhimurium, strains:

TA-1535; hisG, uvrB, rfa (missense mutation)
TA-1537; hisC, uvrB, rfa (- frameshift mutation)
TA-1538; hisD, uvrB, rfa (+ frameshift mutation)

Reaction Mixture D.

The following reaction mixture was employed in the activation tests:

•	Component	<u>Final</u>	Concent	ration/ml
1.	TPN (sodium salt)		6	μM
2.	Isocitric acid		49	μM
3.	Tris buffer, pH 7.4		28	μM
4.	MgC12		. 1.7	•
5.	Isocitric dehydrogenase			Unit
6.	Tissue homogenate or cell fraction		72	mg

Components 1-4 were combined and frozen as a "core" reaction mixture to which the other components were added just prior to use.

E. <u>Positive Control Compounds</u>

Table 1 lists chemicals for positive controls in the direct and activation assays.

TABLE 1 POSITIVE CONTROLS USED IN DIRECT AND ACTIVATION ASSAYS

ASSAY	CHEMICALa	SOLVENT	PROBABLE MUTAGENIC SPECIFICITY b
Non-activation	Ethylmethane sulfonate	Water or saline	BPS
	2-Nitrosofluorene	Dime thylsulfoxide ^C	FS
	Quinacrine or Quinacrine mustard	Wa ter or saline	FS
Activation	Dimethylnitrosamine	Water or saline	BPS
	2-Acetylaminofluorene	Dimethyl sulfoxide ^C	FS

^a Concentrations given in the Results Section.

III. METHODS

A. <u>Toxicity</u>

The solubility, toxicity and doses for all chemicals were determined prior to screening.

Each chemical was tested for survival against strains TA-1537 and D4 over a range of doses to determine the 50% survival dose. Bacteria were tested in phosphate buffer, pH 7.4, for one hour at 37°C on a shaker. Yeasts were tested in phosphate buffer, pH 7.4, for four hours at 30°C on a shaker. The 50% survival dose was determined from the survival curve and the 1/4 and 1/2 50% doses calculated.

b BPS = base-pair substitution; FS = frameshift.

^C Previously shown to be non-mutagenic, see Appendix.

If no toxicity was obtained for a chemical with a given strain, then a maximum dose of 5% (w/v) was used against the strain.

Unless otherwise specified, the doses calculated for the tests in buffer were applied to the activation tests. The solubility of the test chemical under treatment conditions is stated in the Results Section.

B. Plate Tests

Only three bacteria strains were tested in qualitative plate tests. In the non-activation procedure, approximately 109 cells of a log phase culture of the bacterial indicator strains were spread over the surface of a minimal plate, and a measured amount of the test chemical was placed in the center of the test plate. In activation tests, the test chemical was added to the cells, and an aliquot of the mixture was spread on the surface of the test plate. The reaction mixture (0.1 ml) plus tissue extract was then spotted on the surface of the plate. Positive and solvent controls were included. All plates were incubated at 37°C for four days and then scored. Each compound (Test, Positive Control and Solvent Control) was done in duplicate. The results were scored as + or -. Concentrations of the positive control compounds are listed in the Results Section.

C. Suspension Tests

1. Non-activation

Log-phase bacteria and stationary-phase yeast cultures of the indicator organisms were grown in complete broth, washed and resuspended in 0.9% saline to densities of 1 \times 10⁹ cells/ml and 5 \times 10⁷ cells/ml, respectively. This constituted the working stock for tests of a group of test chemicals and their respective controls. Tests were conducted in 30 ml plastic tissue culture flasks. Cells plus appropriate volume(s) of the test chemical were added to the flasks to give a final volume of 2 ml. Solvent replaced the test chemical in the negative controls. Treatment was at 30°C for four hours for yeast tests and at 37°C for one hour for bacterial tests. All flasks were shaken during treatment. Following treatment, the flasks were set in ice. Aliquots of cells were removed, diluted in sterile saline (4°C) and plated on the appropriate complete media. Undiluted samples from flasks containing the bacteria were plated on minimal selective medium. Samples from a 10-1 dilution of treated cells were plated on the selected media for enumeration of gene conversion with strain D4. Bacterial plates were scored after incubation for 48 hours at 37°C. The yeast plates were incubated at 30°C for 3-5 days before scoring.

2. Activation

Bacteria and yeast cells were grown and prepared as described in the nonactivation tests except that the cell densities were increased approximately five-fold for working stock suspensions. Measured amounts of the test and

control chemicals plus 0.25 ml of the stock cell suspension were added to a 30 ml plastic tissue homogenate. All flasks (bacteria and yeast) were incubated at 37°C with shaking. The treatment times as well as the dilutions, plating procedures and scoring of the plates were the same as described for non-activation tests.

D. Preparation of Tissue Homogenates and 9,000 x g Cell Fractions

1. Mice

Male mice (sufficient to provide the necessary quantities of organs for testes, lung and liver homogenates) were killed by cranial blow, decapitated and bled. The three organs were immediately dissected from the animal using aseptic techniques and placed in ice-cold 0.25 M sucrose buffered with Tris at pH of 7.4. Upon collection of the desired quantity of organs, they were washed twice with fresh buffered sucrose and completely homogenized with a motor-driven homogenizing unit at 4°C. The whole organ homogenate obtained from this step was divided into two samples. One sample was frozen at -80°C and the other was centrifuged for 20 minutes at 9,000 x g in a refrigerated centrifuge. The supernatant from the centrifuged sample was retained and frozen at -80°C. These two frozen samples were used for the activation studies.

2. Rats

The same procedures as described for mice were used for this mammal.

3. Primates

The liver, lungs and testes were aseptically removed from freshly killed adult male rhesus (\underline{M} . $\underline{mulatta}$) monkeys. Each organ was \underline{cut} into a number of pieces each sufficient for one week's studies. The tissues were labeled and frozen at -80°C until needed. Tissue homogenates and 9,000 x g supernatants were prepared as described for mice.

E. Data Recording and Reporting

Following the specified incubation periods all population plates were scored by an automatic colony counter and the results from each plate of a set were recorded, in ink, in bound data books. Information necessary for identification of the specific experiment as well as the presence of any contaminant microorganisms was recorded with each set of plate counts. All minimal or other types of selective media plates were hand scored and the results recorded along with the respective population data. For bacteria strains the number of colonies recorded from either the population or selective plates represents that number in 1 ml of test suspension plated. The numbers recorded for the yeast strain D4 represent the number in 0.5 ml of test suspension plated.

Frequencies were mechanically calculated and double checked. All data presented in the Results Section of this report consists of the actual sum of all raw data plate counts and only the frequencies are calculated figures.

IV. SOLUBILITY PROPERTIES OF THE TEST COMPOUND

- 1. NAME OR DESCRIPTION OF TEST COMPOUND:
 Ascorbic Acid
- 2. TEST SOLVENT AND DESCRIPTION OF SOLUBILITY OF THE TEST CHEMICAL UNDER TREATMENT CONDITIONS:

This chemical was soluble at treatment concentrations employed in this evaluation. All tests were conducted in an aqueous environment.

3. OTHER COMMENTS:

BIONETICS

		D4	TA-1537
	Dose No.	% Concentration	% Concentration
Range of concentrations of the test compound used to determine the 50% survival level	1 2 3 4 5	0.01 0.05 0.1 0.25 0.5	0.001 0.005 0.01 0.05 0.1
	Dose No.	% Survival	% Survival
Survival Results Test Date: 8-13-74	Control	100 19 14 12 5 3	100 19 5 0.3 0
	Dose	% Concentration	% Concentration
Concentrations of the test chemical required for mutagenicity tests	Plate Test 첫 50% Survival 첫 50% Survival Other	0.0013 0.0025	0.00025 0.00013 0.00025

VI. NON-ACTIVATION PLATE TESTS

11-20-74

				TA-1	TA-1535		TA-1537		538
Test		Compound	Concentration/plate	T-1	T-2	T-1	T-2	T-1 ·	T-2
PC	4.00	EMS	0.05 ml undi- luted chemical	>103	>103				
		QM	0.25 mg			>102	>102		
		NF	0. 25 mg					>10 ²	>102
sc		SALINE	-	2	7	2	4		
		DMSO	<10%					5	1

NOTE:

PC = positive control
SC = solvent control
T-1 = trial l
T-2 = trial 2
EMS = ethyl methanesulfonate
QM = quinacrine mustard
NF = nitrosofluorene
DMSO = dimethyl sulfoxide
(c) = contamination present

DATE: 11-20-74

6			TA-1535		TA-1537		TA-1538	
Test	Compound	Concentration	T-1	T-2	T-1	T-2	T-1	T-2
TC	FDA 71-65	0.00025%	1	1	4	8	: 1	1

NOTE:

TC = test compound
T-l = trial l
T-2 = trial 2
(c) = contamination present

SPECIES:	MOUSE	•			DATE: 11-2	20-74
				TA-1535	TA-1537	TA-1538
Test	Organ	Compound	Concentration/plate	T-1 T-2	T-1 T-2	T-1 T-2
PC	Li	DMNA	25 μmoles	>10 ³ >10 ³		
•		AAF	1.25 mg		44 43	>102 >102
	Lu	DMIA	25 μmoles	2 4		
		AAF	1.25 mg		9 3	13 8
ting constant constan	T	DMNA	25 µmoles	1 5		
		AAF	1.25 mg		6 10	3 3
SC		DMNA	25 umoles	3 0		
**************************************		AAF	1.25 mg		10 5	1 0
	•	Saline	-	1 1		
	-	DMSO	<10%		12 10	6 7

NOTE:

PC = positive control
SC = solvent and chemical controls
AAF = 2-acetylaminofluorene
DMNA = dimethylnitrosamine
Li = liver

= lung

T = testes
T-l = trial l
T-2 = trial 2
DMSO = dimethyl sulfoxide
(c) = contamination present

SPECIES	S: MOUSE			DATE: 11-20-74						
		Compound		TA-1	535	_TA-1	537	TA-	TA-1538	
Test	Organ		Concentration	T-1	T-2	T-1	T-2	T -1	T-2	
тс	Li	FDA 71-65	0.00025%	3	4	18	25	2	5	
	Lu	FDA 71-65	0.00025%	3	4	10	11	8	5	
	T	FDA 71-65	0.00025%	2	5	20	16	3	3	

NOTE:

TC = test compound
Li = liver
Lu = lung
T = testes
T-1 = trial l
T-2 = trial 2
(c) = contamination present

SPECIES:	RAT				DATE: 11-2	0-74
				TA-1535	TA-1537	TA-1538
Test	Organ	Compound	Concentration/plate	T-1 T-2	T-1 T-2	T-1 T-2
PC	Li	DMNA	25 µmoles	>10 ² >10 ²		
		AAF	1.25 mg		. 41 30	>10 ² >10 ²
	Lu	DMNA	25 umoles	1 0		
		AAF	1.25 mg		7 10	5 0
		DMNA	25 μmoles	3 0		
		AAF	1.25 mg		14 17	10 3
sc		DMNA	25 μmoles	3 0	4	
••	-	AAF	1.25 mg		10 5	1 0
	-	Saline	•	1 1		
******	•	DMSO	<10%		12 10	6 . 7

NOTE:

PC = positive control
SC = solvent and chemical controls
AAF = 2-acetylaminofluorene
DMNA = dimethylnitrosamine
Li = liver

= lung

T = testes
T-1 = trial 1
T-2 = trial 2
DMSO = dimethyl sulfoxide
(c) = contamination present

SPECIES	CIES: RAT DA								E: 11-20-74			
	Organ			_TA-1	535		TA-1	537		TA-1538		
Test		Compound	Concentration	T-1	T-2	•	T-1	T-2		T-1	T-2	
TC	Li	FDA 71-65	0.00025%	5	4		28	14		9	5	
	Lu	FDA 71-65	0.00025%	6	5		13	13		6	5	
	Т	FDA 71-65	0.00025%	3	2		15	24		8	5	

NOTE:

TC = test compound
Li = liver
Lu = lung
T = testes
T-1 = trial 1
T-2 = trial 2
(c) = contamination present

SPECIES:	MONKEY					DATE: 11-20-74				
				TA-1535	TA-1537	TA-1538				
Test	Organ	Compound	Concentration/plate	T-1 T-2	T-1 T-2	T-1 T-2				
PC	Li	DMNA	25 μmoles	>10 ² >10 ²						
		AAF	1.25 mg		32 46	>10 ² >10 ²				
	Lu	DMNA	25 umoles	0 4	S. Lander	Section Section				
		AAF	1.25 mg		20 13	2 4				
•	T	DMNA	25 µmoles	1 1						
		AAF	1.25 mg		10 11	3 7				
SC	•	DMNA	25 umoles	3 0						
•	•	AAF	1.25 mg		10 5	1 0				
		Saline	_	1 1						
	:	DMSO	<10%		12 10	6 7				

NOTE:

PC = positive control
SC = solvent and chemical controls
AAF = 2-acetylaminofluorene
DMNA = dimethylnitrosamine
Li = liver

= lung

T = testes
T-1 = trial 1
T-2 = trial 2
DMSO = dimethyl sulfoxide
(c) = contamination present

SPECIES	: MONKEY			DATE: 11-20-74						
				TA-1	535	TA-1	537	TA-1	538	
Test	Organ	Compound	Concentration	T-1	T-2	T-1	T-2	T-1	T-2	
тс	Li	FDA 71-65	0.00025%	2	3	17	16	3	9	
	Lu	FDA 71-65	0.00025%	1	2	9	10	8	2	
	T	FDA 71-65	0.00025%	3	3	10	16	2	3	

NOTE:

TC = test compound
Li = liver
Lu = lung
T = testes
T-1 = trial 1
T-2 = trial 2
(c) = contamination present

VIII. NON-ACTIVATION SUSPENSION TESTS WITH SALMONELLA INDICATOR STRAINS: POSITIVE AND SOLVENT CONTROL RESULTS

DATE: 10-9-74

Test	Indicator Strain	Compound	Concentration	Total Cells/ mlx108	<u>his+</u> Revertants/ ml	<u>his+</u> Revertants/10 ⁸ Survivors
PC	TA-1535	EMS	0.05 %	6.33	6990	1104.27
	TA-1537	QM	0.01 mg/ml	4.05	469	115.80
	TA-1538	NF	1.25 mg/ml	4.92	241	48.98
SC	TA-1535	SALINE		5.47	8	1.46
	TA-1537	SALINE	-	4.32	51	11.81
	TA-1538	DMSO	-	5.09	54	10.61

NOTE: PC = positive control

SC = solvent control EMS = ethyl methanesulfonate

QM = quinacrine mustard
NF = nitrosofluorene
DMSO = dimethyl sulfoxide

(c) = contamination present

NON-ACTIVATION SUSPENSION TESTS WITH SALMONELLA INDICATOR STRAINS

			DATE: 10-9-74					
Test	Indicator Strain	Compound	Concentration	Total Cells/ mlx10 ⁸	his+ Revertants/ ml	<u>his</u> + Revertants/10 ⁸ Survivors		
TC	TA-1535	FDA 71-65	Н	6.37(116)	. 11	1.73		
TC	TA-1535	FDA 71-65	L	5.47(100)	14	2.56		
TC	TA-1537	FDA 71-65	Н	4.98(115)	67	3.45		
TC	TA-1537	FDA 71-65	L	4.40(102)	45	10.23		
TC	TA-1538	FDA 71-65	H	3.20(63)	55	17.19		
TC	TA-1538	FDA 71-65	L	13.30(261)	62	4.66		

NOTE: TC = test compound

H = high dose L = low dose

(c) = contamination present

() = percent survival

ACTIVATION SUSPENSION TESTS WITH SALMONELLA INDICATOR STRAINS: POSITIVE AND SOLVENT CONTROL RESULTS

DATE:	10-	7-74			Strain TA-15	35
Test	Organ	Compound	Concentration	Total Cells/ mlx10 ⁸	<u>his</u> + Revertants/ ml	<u>his+</u> Revertants/10 ⁸ Survivors
PC	<u>Li</u>	DMNA	100 μmoles/ml	3.00	2195	731.67
	Lu	DMNA	100 µmoles/ml	1.67	11	6.59
	T	DMNA	100 µmoles/ml	1.78	10	5,62
SC	_	DMNA	100 µmoles/ml	5.41	12	2.22
		SALINE		4.54	11(c)	2.42
DATE:	10-8	-74			Strain TA-15	37
Test	Organ	Compound	Concentration	Total Cells/ mlx108	his+ Revertants/ ml	<u>his</u> + Revertants/10 ⁸ Survivors
PC	Li	AAF	1.25 mg/ml	5.63	85	15.10
	<u>Lu</u>	AAF	1.25 mg/ml	5.86	29	4.95
·	Ţ	AAF	1.25 mg/ml	5.53	12	2.17
SC	_	AAF	1.25 mg/ml	4.24	36	8.49
•	-	DMS0	-	5.74	38	6.62
DATE:	10-9	-74	·		Strain TA-15:	38
Test	Organ	Compound	Concentration	Total Cells/ mlx108	<u>his</u> + Revertants/ ml	<u>his</u> + Revertants/10 ⁸ Survivors
PC	<u>L1</u>	AAF	1.25 mg/ml	8.58	256	29.84
	<u>Lu</u>	AAF	1.25 mg/ml	7.74	55	7.11
	T	AAF	1.25 mg/ml	6.17	5 3	8.59
SC	-	AAF	1.25 mg/ml	6.79	48	7.07
	-	DMSO	-	7.90	46	5.82

= solvent and chemical controls (c) = contamination present

AAF = 2-acetylaminofluorene DMNA = dimethylnitrosamine

= liver = lung

= testes DMSO = dimethyl sulfoxide

ACTIVATION SUSPENSION TESTS WITH SALMONELLA INDICATOR STRAINS

DATE:	10-7	-74		Strain TA-1535				
Test	Organ	Compound	Concentration	Total Cells/ mlxl0 ⁸	his+ Revertants/ ml	<u>his</u> + Revertants/10 ⁸ Survivors		
TC	Li	FDA 71-65	Н	6.01(132)	3	0.50		
		FDA 71-65	L	1.98(44)	2(c)	0.10		
	Lu	FDA 71-65	Н	2.32(51)	4	1.72		
		FDA 71-65	L	2.76(61)	4(c)	1.45		
	T	FDA 71-65	Н	3.36(74)	5	1.49		
		FDA 71-65	L	2.74(60)	5	1.83		
DATE:	10-8	-74			Strain TA-15	537		
TC	<u>Li</u>	FDA 71-65	Н	4.30(75)	30	6.98		
		FDA 71-65	L	6.28(109)	32	5.10		
	Lu	FDA 71-65	Н	8.51(148)	32	3.76		
		FDA 71-65	L	8.76(153)	28	3.20		
	T	FDA 71-65	Н	4.14(72)	37	8.94		
		FDA 71-65	L	4.18(73)	41	9.81		
DATE:	10-9	- 74		Strain TA-1538				
TC	Li	FDA 71-65	Н	5.98(76)	47	7.86		
•		FDA 71-65	Ļ	6.86(87)	42	6.12		
	Lu	FDA 71-65	Н	3.17(40)	20	6.31		
		FDA 71-65	L	3.11(39)	22	7.07		
	T	FDA 71-65	Н	10.36(131)	37	3.57		
		FDA 71-65	L .	3.94(50)	25	6.35		

NOTES: H = high dose L = low dose

TC = test compound

Li = liver Lu = lung T = testes

c) = contamination present

= percent survival

ACTIVATION SUSPENSION TESTS WITH SALMONELLA INDICATOR STRAINS: POSITIVE AND SOLVENT CONTROL RESULTS

SPECIE	S: RAT					
DATE:	10-1	1-74	•		Strain TA-15	35
Test	Organ	Compound	Concentration	Total Cells/ mlx10 ⁸	his+ Revertants/ ml	<u>his+</u> Revertants/10 ⁸ Survivors
PC	Li	DMNA	100 μmoles/ml	8.06	1980	245.70
	Lu	DMNA	100 µmoles/ml	15.41	15	0.97
	<u>T</u>	DMNA	100 μmoles/ml	7.72	13	1.68
SC	-	DMNA	100 µmoles/ml	9.31 .	31	3.33
		SALINE		11.22	30	2.67
DATE:	10-31-	74			Strain TA-15	 37
Test	Organ	Compound	Concentration	Total Cells/ mlx108	<u>his</u> + Revertants/ ml	his+ Revertants/10 ⁸ Survivors
PC ·	Li	AAF	1.25 mg/ml	3.13	92	29.39
	Lu	AAF	1.25 mg/ml	5.31	54	10.17
	<u> </u>	AAF	1.25 mg/ml	2.83	25	8.83
SC	_	AAF	1.25 mg/ml	2.34	40	17.09
	_	DMS0	_	3.99	30	7.52
DATE:	10-2	3-74	,		Strain TA-153	 38
Test	Organ	Compound	Concentration	Total Cells/ mlx10 ⁸	<u>his</u> + Revertants/ ml	his+ Revertants/10 ⁸ Survivors
PC	Li ·	AAF	1.25 mg/ml	2.29	98	42.80
	<u>Lu</u>	AAF	1.25 mg/ml	7.97	47	5.90
	T	AAF	1.25 mg/ml	6.41	39	6.08
SC	-	AAF	1.25 mg/ml	9.02	35	3.88
	-	DMSO	-	5.97	57	9.55

NOTE: PC = positive control

= solvent and chemical controls (c) = contamination present SC AAF

= 2-acetylaminofluorene DMNA = dimethylnitrosamine

Li = liver = lung

= testes

DMSO = dimethyl sulfoxide

ACTIVATION SUSPENSION TESTS WITH SALMONELLA INDICATOR STRAINS

SPECIES: RAT

DATE:	10-1	1-74			Strain TA-15	35 ₃	
Test	Organ	Compound	Concentration	Total Cells/ mlxl0 ⁸	his+ Revertants/	his+ Revertants/10 ⁶ Survivors	
TC	Li	FDA 71-65	Н	9.93(89)	18	1.81	
		FDA 71-65	L	14.28(127)	13	0.91	
	Lu	FDA 71-65	Н	17.71(158)	16	0.90	
		FDA 71-65	L	15.90(142)	13	0.82	
	T	FDA 71-65	Н	8.02(71)	13	1.62	
		FDA 71-65	L	12.25(109)	10	0.82	
DATE:	10-3	1-74		Strain TA-1537			
TC _	Li	FDA 71-65	Н	3.06(77)	16	5.23	
		FDA 71-65	L	2.68(67)	49(c)	18.28	
	<u>Lu</u>	FDA 71-65	Н	3.66(92)	21	5.74	
		FDA 71-65	L	4.63(116)	36	7.78	
	T	FDA 71-65	Н	0.56(14)	13	23.21	
		FDA 71-65	L	0.84(21)	21	25.00	
DATE:	10-2	23-74			Strain TA-15	538	
TC	Li	FDA 71-65	Н	4.39(74)	16	3.65	
		FDA 71-65	· L	2.48(42)	24	9.68	
	Lu	FDA 71-65	Н	2.18(37)	19	8.72	
		FDA 71-65	L	2.99(50)	31	10.37	
	Т	FDA 71-65	H	7.78(130)	16	2.06	
		FDA 71-65	L	3.55(59)	17	4.79	

NOTES: H = high dose L = low dose

TC = test compound

Li = liver Lu = lung T = testes

(c) = contamination present

) = percent survival

ACTIVATION SUSPENSION TESTS WITH SALMONELLA INDICATOR STRAINS: POSITIVE AND SOLVENT CONTROL RESULTS

DATE:		·			Strain TA-15	35
Test	Organ	Compound	Concentration	Total Cells/ mlx108	his+ Revertants/ ml	<u>his</u> + Revertants/10 ⁸ Survivors
PC	Li	DMNA	100 µmoles/ml		The transfer death of the transfer of the tran	
	Lu	DMNA	100 μmoles/ml			
	T	DMNA	100 umoles/ml			
SC		DMNA	100 µmoles/ml			
		SALINE	-			
DATE:	11-25	5-74 (Repea	ted Doses)		Strain TA-15	37
Test	Organ	Compound	Concentration	Total Cells/ mlx108	his+ Revertants/ ml	<u>his</u> + Revertants/10 ⁸ Survivors
PC	<u>Li</u>	AAF	1.25 mg/ml			
	Lu	AAF	1.25 mg/ml			
	T	AAF	1.25 mg/ml			
SC		A AF	1.25 mg/ml			
•		DMSO	-	11.70	21	1.80
.DATE:					Strain TA-15	
Test	Organ	Compound	Concentration	Total Cells/ mlx108	his+ Revertants/ ml	<u>his+</u> Revertants/10 ⁸ Survivors
PC	_Li .	AAF	1.25 mg/ml			
	Lu	AAF	1.25 mg/ml			
	T	AAF	1.25 mg/ml			
SC		AAF	1.25 mg/ml		- ·	
	-	· DMSO				
NOTE:	SC = AAF = DMNA = Li = T =	positive consolvent and 2-acetylam dimethylniliver lung testes dimethyl so	d chemical contro inofluorene trosamine	ls		nation present lo. 2468

ACTIVATION SUSPENSION TESTS WITH SALMONELLA INDICATOR STRAINS

DA	ATE:					Strain TA-1	535
Te	est	Organ	Compound	Concentration	Total Cells/ mlx10 ⁸	<u>his</u> + Revertants/ ml	his+ Revertants/10 ⁸ Survivors
7	rc .	Li		Н			
				<u> </u>			
		Lu	·	<u>H</u>			
				<u> </u>			
		<u>T</u>		Н			
			E 74 (DEDEATI		-2-2	Ctuain TA 1	F 2 7
	ATE:	11-2	5-74 (REPEATI	····		Strain TA-1	337
1	TC	<u>Li</u>	·····	Н			
				L			
		<u>Lu</u>		<u>H</u> .			
		T	FDA 71 65	<u> </u>	12 15(104)	27	2.22
			FDA 71-65 FDA 71-65	L	12.15(104) 9.73(83)	13	1.34
 D/	ATE:	.,	TDA /1-03		9.75(03)	Strain TA-1	
	TC	Li		Н			
				L	*******		
		Lu		Н			
				L			
		<u>T</u>		Н			
				L			
N	OTES:	H = hi L = 10	igh dose ow dose				•
		TC = te	est compound				
			iver Ing				•
		T = te	estes				
	(ontamination ercent surviv				

ACTIVATION SUSPENSION TESTS WITH SALMONELLA INDICATOR STRAINS: POSITIVE AND SOLVENT CONTROL RESULTS

CDEATE	·c				•	
<u>SPECIE</u> DATE:	· · · · · · · · · · · · · · · · · · ·)NKEY)-25-74			Strain TA-15	35
Test	Organ	Compound	Concentration	Total Cells/ mlx10 ⁸	his+ Revertants/ ml	<u>his+</u> Revertants/10 ⁸ Survivors
PC	Li	DMNA	100 µmoles/ml	5.24	1082	206.49
	<u>Lu</u>	DMNA	100 μmoles/ml	6.83	17	2.49
	T	DMNA	100 umoles/ml	4.66	13	2.79
SC		DMNA	100 µmoles/ml	5.85	25	4.27
	_	SALINE	_	8.83	22	2.49
DATE:	10	-24-74			Strain TA-15	37
Test	Organ	Compound	Concentration	Total Cells/ mlx108	<u>his</u> + Revertants/ ml	<u>his</u> + Revertants/10 ⁸ Survivors
PC ·	<u>Li</u>	AAF	1.25 mg/ml	3.78	101	26.72
	Lu	AAF	1.25 mg/ml	8.80	76	8.64
	Τ	AAF	1.25 mg/ml	8.68	60	6.91
SC	,	AAF	1.25 mg/ml	4.16	76	18.27
·		DMS0	_	4.20	68	16.19
DATE:	10-30-	74			Strain TA-15:	38
Test	0rgan	Compound	Concentration	Total Cells/ mlx108	<u>his</u> + Revertants/ ml	<u>his+</u> Revertants/10 ⁸ Survivors
PC	Li	AAF	1.25 mg/ml	2.21	67	30.32
	Lu	AAF	1.25 mg/ml	2.03	28	13.79
	T	AAF	1.25 mg/ml	2.64	23	8.71
SC	-	AAF	1.25 mg/ml	2.94	27	9.18
•		DMSO		3.25	45	13.85

AAF = 2-acetylaminofluorene DMNA = dimethylnitrosamine

Li Lu = lung

T = testes
DMSO = dimethyl sulfoxide

ACTIVATION SUSPENSION TESTS WITH SALMONELLA INDICATOR STRAINS

DATE:	10-2	5-74		Strain TA-1535				
Test	Organ	Compound	Concentration	Total Cells/ mlx10 ⁸	his+ Revertants/ ml	<u>his</u> + Revertants/10 ⁶ Survivors		
TC	Li	FDA 71-65	Н	6.63(75)	11	1.66		
		FDA 71-65	L	5.43(61)	28	5.16		
	Lu	FDA 71-65	Н	6.29(71)	13	2.07		
		FDA 71-65	L	4.40(50)(c) 7	1.59		
	T	FDA 71-65	Н	5.10(58)	7(c)	1.37		
		FDA 71-65	L	5.91(67)	18	3.05		
DATE:	10-2	4-74			Strain TA-15	37		
TC	<u>Li</u>	FDA 71-65	Н	4.45(106)	84(c)	18.88		
		FDA 71-65	L	5.05(120)	67	13.27		
	Lu	FDA 71-65	Н	4.29(102)	76	17.72		
		FDA 71-65	L	5.76(137)	43(c)	7.47		
	<u>T</u>	FDA 71-65	Н	2.87(68)	39(c)	13.59		
		FDA 71-65	L	4.17(99)	38(c)	9.11		
DATE:	10-3	80-74			Strain TA-15	538		
TC	Li	FDA 71-65	Н	2.42(74)	28	11.57		
		FDA 71-65	L	3.08(95)	43	13.96		
	Lu	FDA 71-65	Н	3.42(105)	47	13.74		
		FDA 71-65	L	3.39(104)	31(c)	9.15		
	T	FDA 71-65	Н	2.10(65)	16(c)	7.62		
		FDA 71-65	L	2.68(82)	17	6.34		

NOTES: H = high dose

L = low dose

TC = test compound

Li = liver Lu = lung

T = testes

(c) = contamination present

= percent survival

NON-ACTIVATION SUSPENSION TESTS WITH SACCHAROMYCES INDICATOR STRAIN D4

				DAIL.	DAIL: 11-1-74				
				Strain	D4				
Test	Compound	d Concentration	Total Population Screened ^a	Conver	r of tants ^b Try ⁺	Converta 10 ⁵ Sur Ade ⁺	nts Per vivors Try+		
PC	EMS	1.0 %	7.98	715	806	89.60	112.73		
SC	Saline	•	9.62	63	42	6.55	4.37		

NOTE: PC = positive control

SC = solvent control EMS = ethyl methanesulfonate

= number x 10⁵ = number at 10⁻¹ dilution

(c) = contamination present

NON-ACTIVATION SUSPENSION TESTS WITH SACCHAROMYCES INDICATOR STRAIN D4

DATE: 11-1-74

			Strain D4				
Test	Compound	Concentration	Total Population Screened ^a	Number Convert Ade ⁺	ants b Try+	Conver 105 Si Ade+	tants Per urvivors Try [†]
TC	FDA 71-65	Н	7.20(75)	54(c)	34	7.50	4.72
	FDA 71-65	L	8.62(90)	33	38(c)	3.83	4.41

NOTE: TC = test compound

H = high dose
L = low dose

a = number x 10⁵
b = number at 10⁻¹ dilution

(c) = contamination present
() = percent survival

XI. **ACTIVATION SUSPENSION TESTS** WITH SACCHAROMYCES INDICATOR STRAIN D4: POSITIVE AND SOLVENT CONTROL RESULTS

SPEC	CIES: M	DUSE	-		DATE:	11-26-	74			
				Strain D4						
Test	Organ	Compound	Concentration	Total Population Screened ^a		er of ertants ^b Try ⁺		ants Per Irvivors Try [†]		
PC	Li	DMNA	150 μmoles/ml	7.93	65	70	8.20	8.83		
ć	Lu	DMNA	150 μmoles/ml	7.22	44	33	6.09	4.57		
	T	DMNA	150 μmoles/ml	7.39	27	40	3.65	5.41		
SC	-	DMNA	150 µmoles/ml	8.76 .	54	31(c)	6.16	3.54		
	•	SALINE	•	8.66	48	40	5.54	4.62		

= positive control NOTE: PC = solvent and chemical controls SC

DMNA = dimethylnitrosamine

Li liver lung tes tes

= number x 10⁵ = number at 10⁻¹ dilution

= contamination present

ACTIVATION SUSPENSION TESTS WITH SACCHAROMYCES INDICATOR STRAIN D4

SPEC	IES:	MOUSE			DATE: 11-26-74					
					Strain	D4				
Test	Organ	Compound	Concentration	Total Population Screened ^a	Numbe Conyer Ade			ants Per rvivors Try		
TC	Li	FDA 71-65	İH	7.91(91)	39	36	4.93	4.55		
		FDA 71-65	L	9.21(106)	36(c)	48	3.91	5.21		
	Lu	FDA 71-65	Н	9.55(110)	53	47	5.55	4,92		
		FDA 71-65	L	9.43(109)	54	31	5.73	3.29		
	T	FDA 71-65	H	8.85(102)	62	42	7.01	4.75		
		FDA 71-65	L	8.00(92)	46	24	5,75	3.00		

NOTE: TC = test compound
H = high dose
L = low dose
Li = liver
Lu = lung
T = testes
a = number x 10⁵
b = number at 10⁻¹ dilution
(c) = contamination present
() = percent survival

ACTIVATION SUSPENSION TESTS

SPEC	IES:	RAT		- 4	DATE:	10-25	-74	
					Strai	n D4		
Test	Organ	Compound	Concentration	Total Population Screened ^a		er of rtants ^b Try ⁺	Convert 10 ⁵ Su Ade ⁺	ants Per rvivors Try ⁺
PC	Li	DMNA	150 μmoles/ml	5.84(c)	55	60	9.42	10.27
	Lu	DMNA	150 μmoles/ml	8.18	32	29	3.91	3.55
	T	DMNA	150 μmoles/ml	4.45	1	9	0.23	2.02
SC	-	DMNA	150 μmoles/ml	9.61	26	24	2.71	2.50
	-	SALINE	#	12.35	42	36	3.40	2.92

NOTE: PC

PC = positive control
SC = solvent and chemical controls
DMNA = dimethylnitrosamine

liver Lu lung testes

= number x 10⁵ = number at 10⁻¹ dilution = contamination present

ACTIVATION SUSPENSION TESTS

SPEC	IES:	RAT		DATE:	10-25	-74		
 					Strain	D4		
Test	Organ	Compound	Concentration	Total Population Screened ^a	Numbe Conver Ade	tantșb		ants Per irvivors Try [†]
TC	Li	FDA 71-65	Н	9.17(74)	0	27	0	2.94
		FDA 71-65	. L	10.22(83)	29	32	2.84	3.13
	Lu	FDA 71-65	H	8.10(66)	40(c)	23	4.94	2.84
		FDA 71-65	L	9.33(76)	22	30(c)	2.36	3.22
	T	FDA 71-65	Н	8.82(71)	36	31(c)	4.08	3.52
		FDA 71-65	L	8.91(72)	38(c)	24(c)	4.27	2.69

NOTE: TC = test compound H = high dose = low dose Li = liver

Lu = lung = testes

= number $\times 10^5$ b = number at 10⁻¹ dilution (c)= contamination present

)= percent survival

ACTIVATION SUSPENSION TESTS WITH SACCHAROMYCES INDICATOR STRAIN D4: POSITIVE AND SOLVENT CONTROL RESULTS

SPEC	IES: 1	MONKEY			DATE:	11-7-7	4	
					Strai	n D4		
Test	Organ	Compound	Concentration	Total Population Screened ^a		er of rtants ^b Try ⁺		ants Per rvivors Try ⁺
PC	Li	DMNA	150 μmoles/ml	7.44	73	21	9.81	2.82
	Lu	DMNA	150 μmoles/ml	9.39	37	34	3.94	3.62
	T	DMNA	150 μmoles/ml	7.04(c)	50	27	7.10	3.84
SC	-	DMNA	150 μmoles/ml	9.12(c)	37	13	4.06	1.43
	•	SALINE		9.79	28	13	2.86	1.33

NOTE: PC

PC = positive control
SC = solvent and chemical controls
DMNA = dimethylnitrosamine

liver Li Lu lung testes

= number x 10⁵
= number at 10⁻¹ dilution
= contamination present

ACTIVATION SUSPENSION TESTS WITH SACCHAROMYCES INDICATOR STRAIN D4

SPECIES:		MONKEY		DATE:	DATE: 11-7-74				
					Strai	n D4			
Test	Organ	Compound	Concentration	Total Population Screened ^d		er of rtants ^b Try [†]		ants Per rvivors Try [†]	
TC	Li	FDA 71-65	ił	4. v.	43	30		F=6	
		FDA 71-65	L	8.34(85)	57	45	6.83	5.40	
	Lu	FDA 71-65	H	9.20(94)	50	25	5.43	2.72	
		FDA 71-65	L.	9.84(101)	40	40	4.07	4.07	
	T	FDA 71-65	Н	9.02(92)	57	35	6.32	3.88	
		FDA 71-65	L	8.88(91)	48	40	5.41	4.50	

NOTE:

TC = test compound

H = high dose

L = low dose

Li = liver

Lu = lung

T = testes $a = number \times 10^5$

 $b = number at 10^{-1} dilution$

(c)= contamination present

()= percent survival

XII. SUMMARY OF RESULTS

COMPOUND FDA 71-65

A. Suspension Tests

Activation				Salmonella Reversion Frequencies (x 10 ⁻⁸)			Saccharomyces D4 Conversion Frequencies (x 10-5)		
Testa	Speciesb	Organ ^C	TA-1535	TA-1537	TA-1538	Ade+	Try ⁺		
NA-PC NA-NC	• •	- -	1104.27 1.46	115.80 11.81	48.98 10.61	89.60 6.55	112.73 4.37		
NA-H NA-L	-	<u>-</u> -	1.73 2.56	3.45 10.23	17.19 4.66	7.50 3.83	4.72 4.41		
A-NC (-C) A-NC (+C) A-PC A-PC A-PC	<u>-</u>	- Li Lu T	2.42 2.22 731.67 6.59 5.62	6.62 8.49 15.10 4.95 2.17	5.82 7.07 29.84 7.11 8.59	5.54 6.16 8.20 6.20 6.09	4.62 3.54 8.83 4.57 5.41		
A-H A-L A-H A-L A-H A-L		Li Lu T	0.50 0.10 1.72 1.45 1.49	6.98 5.10 3.76 3.20 8.94 9.81	7.86 6.12 6.31 7.07 3.57 6.35	4.93 3.91 5.55 5.73 7.01 5.75	4.55 5.21 4.92 3.29 4.75 3.00		

mouse

monkey rat

Project 2468

⁼ non activation

negative control positive control

activation high dose low dose

c Li = liver Lu = lung T = testes

⁽⁻C) = solvent control
(+C) = chemical control

Plate Tests

	Activation			Salmonella Responses					
Test ^a	Species ^b	Organ ^C		TA-1535	TA-1537	TA-1538			
NA-PC NA-NC	-	-		+	+	+ -			
NA-H	-	-		-	-	• •			
A-NC (-C) A-NC (+C)	· · · · · · · · · · · · · · · · · · ·	-	· · · · · · · · · · · · · · · · · · ·		-	· -			
A-PC A-PC A-PC	M M M	Li Lu T		+ - -	+ - -	+ - -			
А-Н	M	Li		. ••	-	-			
А-Н	M	Lu		-	-	. -			
А-Н •	: M	T		-	<u>-</u>	· -			

Мо

Project 2468

NA

⁼ non activation
= negative control
= positive control
= activation
= high dose
= low dose

⁼ monkey Lu = rat

⁼ lung
= testes

⁽⁻C) = solvent control
(+C) = chemical control

SUMMARY OF TEST RESULTS

COMPOUND FDA 71-65

A. <u>Suspension Tests</u>

	Activa	tion		Salmonella Rev Frequencies ()			D4 Conversion s (x 10 ⁻⁵)
Testa	Speciesb	Organ ^C	TA-	-1535 TA-1537	TA-1538	Ade+	Try ⁺
NA-PC NA-NC	- 	•					
NA-H	• • • • • • • • • • • • • • • • • • •	-					
A-NC (-C) A-NC (+C) L-FC A-PC A-PC	- R R R	- Li Lu T	2.0 3.245. 0.9	33 17.09 70 29.39 97 10.17	9.55 3.88 42.80 5.90 6.08	3.40 2.71 9.42 3.91 0.23	2.92 2.50 10.27 3.55 2.02
A-H A-L A-H A-L A-H A-L	R R R	Li Lu T	1.8 0.9 0.8 0.8 1.6	91 18.28 90 5.74 32 7.78 52 2.22*	3.65 9.68 8.72 10.37 2.06 4.79	6.83 5.43 4.07 6.32 5.41	5.40 2.72 4.07 3.88 4.50
NC = ne PC = pe A = ac	on activation activation active contouring the cont	rol	Mo = R =	mouse ^C Li monkey Lu rat T rom repeat tests	= liver = lung = testes	(-C) = solver (+C) = chemic	nt control

Project <u>2468</u>

Plate Tests

	Activa	tion	Salmonella Responses					
Test ^a	Speciesb	Organ ^C	TA-1535	TA-1537	TA-1538			
NA-PC NA-NC	- -	. -			•			
NA-H	- -	. -						
A-NC (-C) A-NC (+C)	-	- .	v	-	-			
A-PC A-PC A-PC	R R R	Li Lu T	+ - -	- + -	- + -			
А-Н	R	Li		-				
A-H	R	Lu	, -	-	-			
А-н	<u>:</u> R	T		•	-			
NC = negat PC = posit	activation tive control tive control vation dose lose	b м Мо R	= mouse C Li = monkey Lu = rat T	= liver = lung = testes	(-C) = solvent control (+C) = chemical control			

Project 2468

SUMMARY OF TEST RESULTS

COMPOUND FDA 71-65

A. <u>Suspension Tests</u>

	Activation		Salmonella Reversion Frequencies (x 10 ⁻⁸)			Saccharomyces D4 Conversio Frequencies (x 10 ⁻⁵)		
Testa	<u>Species</u> b	Organ ^C ,	TA-1535	TA-1537	TA-1538	Ade+	Try [†]	
NA-PC NA-NC		-						
NA-H NA-L	- 	•						
A-NC (-C) A-NC (+C) 4-FC A-PC A-PC	- Mo Mo Mo	- Li Lu T	2.49 4.27 206.49 2.49 2.79	16.19 18.27 26.72 8.64 6.91	13.85 9.18 30.32 13.79 8.71	2.86 4.06 9.81 3.94 7.10	1.33 1.43 2.82 3.62 3.84	
A-H A-L A-I! A-L A-H A-L	Mo Mo Mo	Li Lu T	1.66 5.16 2.07 1.59 1.37 3.05	18.88 13.27 17.72 7.47 13.59 9.11	11.57 13.96 13.74 9.15 7.62 6.34	0 2.84 4.94 2.36 4.08 4.27	2.94 3.13 2.84 3.22 3.52 2.69	
NC = ne PC = pc A = ac H = hi	on activation egative contositive contositive contositive gh dose ow dose	rol	M = mouse Mo = monkey R = rat	¢ L1 Lu T	= liver = lung = testes		nt control cal control	

B. <u>Plate Tests</u>

	Activa	tion		Salm	nonella Respon	ses	
Test ^a	Speciesb	Organ ^C		TA-1535	TA-1537	TA-1538	-
NA-PC NA-NC		-			•	•	
NA-H	-	-					
A-NC (-C) A-NC (+C) A-PC A-PC A-PC	- - Mo Mo Mo	- Li Lu T		- - + -	- - + -	- - + -	
А-Н	Мо	Li		-	-	- -	
A-H	Мо	Lu	•		-	-	
А-Н	Мо	T		•	-	•	
NC = negati	ose	b _N	lo = monkey	C Li Lu T	= liver = lung = testes	(-C) = solven (+C) = chemica	

Project 2468

XIII. INTERPRETATION AND CONCLUSIONS

Compound FDA 71-65, Ascorbic Acid, was evaluated for genetic activity in a series of in vitro microbial assays with and without metabolic activation. The following results were obtained:

- A. Salmonella typhimurium
- 1. Plate Tests

At a concentration of 0.00025%, this compound was not mutagenic for TA-1535, TA-1537 or TA-1538 in direct or activation plate tests.

2. Non-activation Suspension Tests

These tests were negative.

3. Activation Suspension Tests

These tests were negative. Two dose levels with rat testes and strain TA-1537 were repeated. The repeat tests were negative.

- B. <u>Saccharomyces</u> <u>cerevisiae</u>
- 1. Non-activation Suspension Tests

These tests were negative.

2. Activation Suspension Tests

These tests were negative.

C. <u>Conclusions</u>

Compound FDA 71-65, Ascorbic Acid, was not genetically active for bacterial and yeast indicator organisms under the conditions of this evaluation.

SUBMITTED BY:

David Brusick, Ph.D.

Director

Department of Genetics

APPENDIX

SUMMARY OF TESTS EVALUATING DMSO FOR GENETIC ACTIVITY IN <u>SALMONELLA</u> AND <u>SACCHAROMYCES</u>

COMPOUND DIMETHYSULFOXIDE

Suspension Te	Suspension Tests			Salmonella Reversion Frequencies (x 10 ⁻⁸)		Saccharomyces D4 Conversion Frequencies (x 10 ⁻⁵)	
Test	<u>Activa</u>	tion Organ ^b	TA-1535	TA-1538	Ade ⁺	Try ⁺	
Non-activation Control (-C) High Dosec Low Dosed	- -	- - -	0.74 1.91 0.53	0.88 1.05 1.37	32.51 28.32 40.73	4.34 2.95 0.49	
Activation Control (+C)			1.80	0.36 1.04	38.27 37.12	2.47 2.64	
Control (-C) High Dose ^C	- M M	- Li Lu	0.34 0.59 0.62	1.07 0.58 0.30	47.77 36.29 34.35	2.75 1.39 1.94	
Lose Dose ^d	М М М	T Li Lu T	0.62 0.43 0.11	0.87 3.14 0.39	34.02 42.30 45.95	1.18 1.40 2.32	

		+ chemica	1 control without	homogena	te
Note: (-C) = solvent c a M = mouse Mo = monkey R = rat	b Li = liver Lu = lung T = testes		Bacteria = 3% Yeast = 5%	d	Bacteria = 1.5% Yeast = 2.5%

COMPOUND DIMETHYSULFOXIDE

Plate Tests В.

В.	Plate Tests				Sal	monella Respon	Responses	
		Activa Species ^a	tion Organ ^b		TA-1535	TA-1537	TA-1538	
	activation		• •		-	•	<u>-</u>	
	Control (-C) Test compound (3%)	 			•	-		
4	ivation	_	, i.	\ \ \	. •	- 		
	Control (+C) Control (-C)	•	-	•	•	-	<u>.</u>	
	Test compound (3%)	M M R R R Mo Mo	Li Lu T Li Lu T Li Lu T		- - - - -	-	- - - -	

_	and (+C) = chemical control without homogenate
 control	and (+L) - Chemical
 / Cl = enlupil Colleiu:	Q.,

M = mouse Mo = monkey R = rat